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Radiation Integrals (1)

Consider a perfect electric conductor (PEC) with an electric surface current flowing on S.
In the case where the conductor is part of an antenna (a dipole), the current may be caused
by an applied voltage, or by an incident field from another source (a reflector).  The
observation point is denoted by P and is given in terms of unprimed coordinate variables.
Quantities associated with source points are designated by primes.  We can use any
coordinate system that is convenient for the particular problem at hand.
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The medium is almost always free space ( oo εµ , ), but we continue to use ( εµ, ) to cover
more general problems.  If the currents are known, then the field due to the currents can be
determined by integration over the surface.
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Radiation Integrals (2)

The vector wave equation for the electric field can be obtained by taking the curl of
Maxwell’s first equation:

sJjEkE
rrr

ωµ−=×∇×∇ 2

A solution for E
r

 in terms of the magnetic vector potential )(rA rr
 is given by

( )
ωµε

ω
j

rA
rAjrE

)(
)()(

rr
rrrr •∇∇

+−= (1)

where )(rr  is a shorthand notation for (x, y, z) and sde
R
J

rA jkR

S

s ′= −∫∫
rrr

π
µ

4
)(

We are particularly interested in the
case were the observation point is in the
far zone of the antenna ( ∞→P ).  As P
recedes to infinity, the vectors rr  and R

r
become parallel.

x

y

z

rr′

r
r

OBSERVATION
POINT

( )rrrrR ˆˆ •′−≈
rrr

rr ˆ•′r



3

Naval Postgraduate School              Department of Electrical & Computer Engineering         Monterey, California

Radiation Integrals (3)

In the expression for )(rA rr
 we use the approximation rR /1/1 ≈  in the denominator and
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 in the exponent.  Equation (2) becomes
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When this is inserted into equation (1), the del operations on the second term lead to 2/1 r
and 3/1 r  terms, which can be neglected in comparison to the Aj

r
ω−  term, which depends

only on r/1 .  Therefore, in the far field,
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    (discard the rE  component) (3)

Explicitly removing the r component gives,
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The radial component of current does not contribute to the field in the far zone.
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Radiation Integrals (4)

Notice that the fields have a spherical wave behavior in the far zone: 
r

e
E

jkr−
~

r
.  The

spherical components of the field can be found by the appropriate dot products with E
r

.
More general forms of the radiation integrals that include fictitious magnetic surface
currents ( msJ
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) are:
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The radiation integrals apply to an unbounded medium.  For antenna problems
the following process is used:

1. find the current on the antenna surface, S,
2. remove the antenna materials and assume that the currents are suspended

in the unbounded medium, and
3. apply the radiation integrals.
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Hertzian Dipole (1)

Perhaps the simplest application of the radiation integral is the calculation of the fields of
an infinitesimally short dipole (also called a Hertzian dipole).  Note that the criterion for
short means much less than a wavelength, which is not necessarily physically short.
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surface current distribution is independent
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A/m

r
=
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Hertzian Dipole (2)

Using zzr ′=′ ˆ
r  and θφθφθ cosˆsinsinˆcossinˆˆ zyxr ++=  gives θcosˆ zrr ′=′ •
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Hertzian Dipole (3)

Note that the electric field has only a 1/r dependence.  The absence of higher order terms
is due to the fact that the dipole is infinitesimal, and therefore 0→ffr .  The field is a
spherical wave and hence the TEM relationship can be used to find the magnetic field
intensity
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The power flow is outward from the source, as expected for a spherical wave.  The
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Solid Angles and Steradians

Plane angles: s = Rθ ,  if s = R then θ =1 radian

R

θ

ARC LENGTH

s

Solid angles: Ω = A / R2 , if A = R2, then Ω =1 steradian

SURFACE 
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Ω = A / R2
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Directivity and Gain (1)

The radiation intensity is defined as
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defined as
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Dipole Polar Radiation Plots

Half of the radiation pattern of the dipole is plotted below for a fixed value of φ .  The half-
power beamwidth (HPBW) is the angular width between the half power points (1/ 2
below the maximum on the voltage plot, or –3dB below the maximum on the decibel plot).
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Dipole Radiation Pattern

Radiation pattern of a Hertzian dipole aligned with the z axis.  Dn  is the normalized
directivity.  The directivity value is proportional to the distance from the center.
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Directivity and Gain (2)

Another formula for directive gain is

2
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normalized radiation pattern)
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Note that both the numerator and denominator have the same 1/r dependence, and hence
the ratio is independent of r.  This approach is often more convenient because most of our
calculations will be conducted directly with the electric field.  Normalization removes all
of the cumbersome constants.
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Directivity and Gain (3)

As an illustration, we re-compute the directivity of a Hertzian dipole.  Noting that the
maximum magnitude of the electric field is occurs when 2/πθ = , the normalized electric
field intensity is simply

θφθ sin),(norm =E
r
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Beam Solid Angle and Radiated Power

In the far field the radiated power is
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Gain vs. Directivity (1)

Directivity is defined with respect to the radiated power, radP .  This could be less than the
power into the antenna if the antenna has losses.  The gain is referenced to the power into
the antenna, inP .

inP
incP

refP aRlR

ANTENNA
I

Define the following:

=incP  power incident on the antenna terminals
=refP  power reflected at the antenna input

=inP  power into the antenna

=lossP  power loss in the antenna (dissipated in resistor ll RIPR 2
2
1

loss, = )

=radP  power radiated (delivered to resistor aa RIPR 2
2
1

rad, = , aR is the radiation

   resistance)

The antenna efficiency, e, is inrad ePP =  where 10 ≤≤ e .
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Gain vs. Directivity (2)

Gain is defined as
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Most often the use of the term gain refers to the maximum value of ),( φθG .

Example: The antenna input resistance is 50 ohms, of which 40 ohms is radiation
resistance and 10 ohms is ohmic loss.  The input current is 0.1 A and the directivity of the
antenna is 2.
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Ground Planes and Images (1)

In some cases the method of images allows construction of an equivalent problem that is
easier to solve than the original problem.

When a source is located over a PEC ground plane, the ground plane can be removed and
the effects of the ground plane on the fields outside of the medium accounted for by an
image located below the surface.

  ORIGINAL PROBLEM EQUIVALENT PROBLEM

h h

h

ORIGINAL
SOURCES

IMAGE
SOURCES

REGION 1

REGION 2

GROUND PLANE
REMOVED

I dl
→

I dl
→

I dl
→

I dl
→

I dl
→

I dl
→

PEC

The equivalent problem holds only for computing the fields in region 1.  It is exact for an
infinite PEC ground plane, but is often used for finite, imperfectly conducting ground
planes (such as the Earth’s surface).
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Ground Planes and Images (2)

The equivalent problem satisfies Maxwell’s equations and the same boundary conditions
as the original problem. The uniqueness theorem of electromagnetics assures us that the
solution to the equivalent problem is the same as that for the original problem.

Boundary conditions at the surface of a PEC: the tangential component of the electric field
is zero.
         ORIGINAL PROBLEM EQUIVALENT PROBLEM

PEC

h

h

h

Idz
→

Idz
→

Idz
→

Eθ Eθ1 Eθ2
E⊥

E|| =0

θ2

θ1
TANGENTIAL
COMPONENTS

CANCEL

A similar result can be shown if the current element is oriented horizontal to the ground
plane and the image is reversed from the source. (A reversal of the image current direction
implies a negative sign in the image’s field relative to the source field.)
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Ground Planes and Images (3)

Half of a symmetric conducting structure can be removed if an infinite PEC is placed on
the symmetry plane.  This is the basis of a quarter-wave monopole antenna.

z = 0

I

Vg

+

−
2b

I

Vg
+

−
b

λ / 4 λ / 4

ORIGINAL
DIPOLE

MONOPOLE

PEC

The radiation pattern is the same for the monopole as it is for the half wave dipole above
the plane z = 0 , the field in the monopole gap is twice the field in the gap of the dipole,
and since the voltage is the same but the gap is half of the dipole’s gap

56.36
2
12.73

dipole2
1

monopole === aa RR   ohms
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Receiving Antennas (1)

When an antenna is receiving, it is
convenient to define an effective area (or
effective aperture) Ae .  The power delivered
to a load at the antenna terminals is

  Pr =
r 

W inc Ae

where   
r 

W inc  is the incident power density.

  
r 

W inc

ANTENNA
INCIDENT

WAVE FRONT

  Pr =
r 

W inc Ae

An equivalent circuit for the antenna is shown below.  The current is I = Vinc / Za + ZL( ).

  
r 

W inc ZaVinc LZLZ

ANTENNA
EQUIVALENT

CIRCUIT

I
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Receiving Antennas (2)

Let the load be conjugate matched to the antenna impedance (which is the condition for
maximum power transfer) and assume there are no losses (  Rl = 0 )

ZL = Za
*     (RL = Ra and aL XX −= ).

The equivalent circuit becomes
I

Vinc 2 Ra

The power delivered to the receiver can be found in terms of the effective area

e
a

ar AW
R

V
RIP inc

2
inc2

42
1

2
1 r

≡==

For a Hertzian dipole 
π

η
6

)( 2lkRa = ,   Einc = Vinc / l, and 
  
r 

W inc =
1
2

Einc
2

η
.  Now solve for Ae .
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Receiving Antennas (3)

( )
( )

2
2

2

2
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2
inc

inc
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inc 119.0

)2(2
3

2
1

4
2
1

42
1

λ
π

λπ

η

==









==

E
R

V
WR

V
A

a
a

e r

For a Hertzian dipole the directivity is 3/2, and therefore the effective area can be written
as

2

22 4

442
3

λ

π

π
λ

π
λ m

m

e
e

A
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
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
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
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
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




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The subscript m denotes that it is the maximum effective area because the losses are not
included.  If losses are included then the gain is substituted for directivity

2

2 4
4 λ

π
π

λ e
e

A
GGA =⇒










=

The formula holds for any type of antenna that has a well-defined aperture, or surface area
through which all of the radiated power flows.  From the formula one can deduce that the
effective area is related to the physical area A by eAA

me = .
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Polarization Loss (1)

For linear antennas an effective height (  
r 
h e ) can be defined

  Voc =
r 
E inc •

r 
h e Voc   

r 
E inc

  
r 
h e

The open circuit voltage is a maximum when the antenna is aligned with the incident
electric field vector. The effective height of an arbitrary antenna can be determined by
casting its far field in the following form of three factors

[ ] [ ]),(),,( φθφθ e

jkr

o h
r

e
ErE

rr








=

−

The effective height accounts for the incident electric field projected onto the antenna
element.  The polarization loss factor (PLF) between the antenna and incident field is

  
PLF, p =

r 
E inc •

r 
h e

2

r 
E inc

2 r 
h e

2
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Polarization Loss (2)

Example: The Hertzian dipole’s far field is

[ ]43421l
r

r
),(

ˆsin
4

),,(

φθ

θθ
π

η
φθ

eh
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r
ekIj
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
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






=

−

If we have a second dipole that is rotated by an angle δ  in a plane parallel to the plane
containing the first dipole, we can calculate the PLF as follows.  First,

  Voc =
r 
E inc •

r 
h e =

r 
E inc ˆ z •

r 
h e ˆ ′ z =

r 
E inc

r 
h e ˆ z • ˆ ′ z =

r 
E inc

r 
h e cosδ

Voc

  
r 
E inc

  
r 
h e

z

x

z
′ z 

yy
δ

TRANSMIT RECEIVE
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Polarization Loss (3)

The PLF is

δ
δ 2

22
inc

222
inc

22
inc

2
inc

cos
cos

==
•

=
e

e

e

e

hE

hE

hE

hE
p rr

rr
rr
rr

When the dipoles are parallel, p=1, and there is no loss due to polarization mismatch.
However, when the dipoles are at right angles, p=0 and there is a complete loss of signal.
A more general case occurs when the incident field has both θ  and φ  components

  
r 
E inc = Eiθ

ˆ θ + Eiφ
ˆ φ 

( )
22

2

ˆˆ

ˆˆ

eii

eii

hEE

hEE
p r

r

φθ

φθ

φθ

φθ

+

•+
=

Example: The effective height of a RHCP antenna which radiates in the +z direction is
given by the vector ( )φθ ˆˆ jhh oe −=

r
.  A LHCP field is incident on this antenna (i.e., the

incident wave propagates in the –z direction): ( ) jkz
o ejEE φθ ˆˆ

inc −=
r
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Polarization Loss (4)

The PLF is

( ) ( )
0

22

ˆˆˆˆ

22

2

=
−•−

=
oo

jkz
oo

hE

ejjhE
p

φθφθ

If a RHCP wave is incident on the same antenna, again propagating along the z axis in the
negative direction, ( ) jkz

o ejEE φθ ˆˆ
inc +=

r
.  Now the PLF is

( ) ( )
1

22

ˆˆˆˆ

22

2

=
+•−

=
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hE

ejjhE
p

φθφθ

Finally, if a linearly polarized plane wave is incident on the antenna, jkz
oeEE θ̂inc =

r

( )
2/1

2

ˆˆˆ

22

2

=
•−

=
oo

jkz
oo

hE

ejhE
p

θφθ

If a linearly polarized antenna is used to receive a circularly polarized wave (or the
reverse situation), there is a 3 dB loss in signal.
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Example: Crossed Dipoles (1)

Crossed dipoles (also known as a
turnstile) consists of two orthogonal
dipoles excited 90 degrees out of phase.

Ix = Io

Iy = Ioe jπ / 2 = jIo
 

  Ix

x

z

y

Iy

The radiation integral gives two terms

















∫ ′+∫ ′−

−

′

•
−

′

•

−
=

2/

2/

sinsin

ˆˆ

2/

2/

cossin

ˆˆ

sincoscoscos
4

l

l

l

l 4342143421 ydeIjxdeIjkro kyj

y

o
kxj

x

oe
r

jk
E φθ

θ

φθ

θ

φθφθθ π
η

If 1<<lk  then ∫
−

′ ≈′
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2/

cossin
l

l
lxde kxj φθ  and similarly for the y integral.  Therefore,
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Example: Crossed Dipoles (2)

A similar result is obtained for Eφ

( ) ( )φφφφφ π
η

cossincossin
4

j
jkr

oj
jkr

E

o
r

e
E

r
eIjk

E

o

−
−

−=−
−

−≡

=
321
l

Consider the components of the wave propagating towards an observer on the z axis
θ = φ = 0 : Eθ = Eo , Eφ = jEo, or

( )yjx
r

e
EE

jkr

o ˆˆ +=
−r

which is a circularly polarized wave.  If the observer is not on the z axis, the projected
lengths of the two dipoles are not equal, and therefore the wave is elliptically polarized.
The axial ratio (AR) is a measure of the wave’s ellipticity at the specified θ,φ :

AR =
Emax
Emin

, 1 ≤ AR ≤ ∞

For the crossed dipoles

AR =
Eφ

Eθ
=

1

cos2 θ cos2 φ + sin2 φ( )
=

1
cosθ
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Example: Crossed Dipoles (3)

The rotating linear pattern is shown.  A linear receive antenna rotates like a propeller
blade as it measures the far field at range r.  The envelope of the oscillations at any
particular angle gives the axial ratio at that angle.  For example, at 50 degrees the AR is
about  1/ 0.64 =1.56 = 1.93 dB.
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Example: Crossed Dipoles (4)

Examples of rotating linear patterns on crossed dipoles that are not equal in length
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Friis Transmission Equation (1)

Consider two antennas that form a communication or data link.  The range between the
antennas is R.  (The pattern can depend on both θ  and φ , but only θ  is indicated.)

TRANSMIT

RECEIVE
Pt Gt ,Γt

Aer
,Gr ,Γrθr

θt

Pr

R

The power density at the receive antenna is

( )
)(

4

1
2

ANTENNA
INTO POWER

2

inc tt
tt G

R

P
W θ

π

48476
r Γ−

=
\

and the received power is ( )pAWP rrerr
2

inc 1)( Γ−= θ
r

  (p is the polarization loss factor,
PLF, p < 1 if the transmit and receive polarizations are not aligned).   
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Friis Transmission Equation (2)

But Aer
= Gr(θ r )λ2 /(4π ),

( )
( )( )pL

R

GGP
P rt

rrttt
r

22
2

2
11

4

)()(
Γ−Γ−=

π

λθθ

L is a general loss factor (0 ≤ L ≤ 1).  This is known as the Friis transmission equation
(sometimes called the link equation).

Example: (Satcom system) Parameters at the ground station (uplink):

Gt = 54 dB = 251188.6, L = 2 dB = 0.6310 , Pt =1250  W
R=23,074 miles = 37,132 km,  f =14 GHz

At the satellite (downlink)

Gr = 36 dB = 3981,  Pt = 200 W,  f =12 GHz
If we assume polarization matched antennas and no reflection at the antenna inputs,

( ) ( )
dBm 8.57dBw 8.87W 1066.1

)6310.0(
10371324

)0214.0)(3981)(6.251188)(1250(

9

232

2

−=−=×=

×
=

−

π
rP
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Radar Range Equation (1)

“Quasi-monostatic” geometry:

R

TX

Pt

Gt

RX

Pr

Gr σ

σ =  radar cross section (RCS) in square meters
Pt = transmitter power, watts
Pr =  received power, watts
Gt =  transmit antenna gain in the direction of the target (assumed to be the maximum)
Gr =  transmit antenna gain in the direction of the target (assumed to be the maximum)
PtGt = effective radiated power (ERP)

From antenna theory: Gr =
4πAer

λ2

== AeAer  effective area of the receive antenna
=A  physical aperture area of the antenna

λ =  wavelength ( fc / )
e =  antenna efficiency



34

Naval Postgraduate School              Department of Electrical & Computer Engineering         Monterey, California

Radar Range Equation (2)

Power density incident on the target, incW
r

 

Pt Gt

R
Winc = PtGt

4πR2

POWER DENSITY 
AT RANGE R

(W / m2 )

Power collected by the radar target and scattered back towards the radar

INCIDENT WAVE FRONT 
IS APPROXIMATELY PLANAR 

AT THE TARGET

TARGET EFFECTIVE  
COLLECTION AREA IS σ

Pc = σWinc= Pt Gtσ
4πR2
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Radar Range Equation (3)

The RCS gives the fraction of incident power that is scattered back toward the
radar.  Therefore, Ps = Pc  and the scattered power density at the radar,   

r 
W s, is obtained

by dividing by 4πR2 .
 

TARGET 
RCS σ

RECEIVER 
(RX)

Ws =
Ps

4πR2

SCATTERED POWER 
DENSITY AT RANGE 

R  FROM THE TARGET

The target scattered power collected by the receive antenna is Ws Aer .  Thus the
maximum target scattered power that is available to the radar is

Pr =
PtGtσAer

(4πR2 )2 =
PtGtGrσλ2

(4π )3 R4

This is the classic form of the radar range equation (RRE).
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Radar Range Equation (4)

Including the reflections at the antenna terminals

( )( ) ( )( )L
R

GGP
L

R
AGP

P rt
rtt

rt
ertt

r
22

43

2
22

22 11
)4(

11
)4(

Γ−Γ−=Γ−Γ−=
π

σλ
π

σ

For monostatic systems a single antenna is generally used to transmit and receive so
Gt = Gr ≡ G  and Γr = Γt .  The above form of the RRE is too crude to use as a design tool.
Factors have been neglected that have a significant impact on radar performance:

• noise,
• system losses,
• propagation behavior,
• clutter,
• waveform limitations, etc.

However, this form of the RRE does give some insight into the tradeoffs involved in radar
design.  The dominant feature of the RRE is the 1 / R4  factor.  Even for targets with
relatively large RCS, high transmit powers must be used to overcome the 1 / R4  when the
range becomes large.
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Noise in Systems (1)

One way that noise enters communication and radar systems is from background radiation
of the environment.  (This refers to emission by the background as opposed to scattering of
the system’s signal by the background, which is clutter.)  Noise is also generated by the
components in the radar’s receive channel.  Under most conditions it is the internally
generated thermal noise that dominates and limits the system performance.

SINUSOIDAL PULSE WITHOUT NOISE IDEAL
TRANSMITTED

WAVEFORM

TRANSMITTER

RECEIVERNOISY OUTPUT
WAVEFORM

TARGET RETURN

NOISE

NOISESINUSOIDAL PULSE WITH NOISE THERMAL
NOISE

ANTENNA
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Noise in Systems (2)

A high noise level will hide a weak signal and possibly cause a loss in communications or,
in the case of radar, prevent detection of a target with a low radar cross section.

• Thermal noise is generated by charged particles as they conduct.  High temperatures
result in greater thermal noise because of increased particle agitation.

• Noise is a random process and therefore probability and statistics must be invoked to
access the impact on system performance.

• Thermal noise exists at all frequencies.  We will consider the noise voltage to be
constant with frequency (so called white noise) and its statistics (average and variance)
independent of time (stationary).

If the noise voltage generated in a resistor at temperature T Kelvin (K) is measured, it is
found to obey Plank’s blackbody radiation law

1

4
T −

=
hfkn

e

hfBR
V

3410546.6 −×=h J-sec is Plank’s constant, KJ/1038.1 23 o−×=k  is Boltzmann’s constant,
B is the system bandwidth in Hz, f is the center frequency in Hz, and R is the resistance in
ohms.
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Noise in Systems (3)

At microwave frequencies hf << kT and the exponential can be approximated by the first
two terms of a Taylor’s series

T
1T

k
hf

ehfk ≈−

and therefore, BRkVn T4= , which is referred to as the Rayleigh-Jeans approximation.

If the noisy resistor is used as a generator and connected to a second load resistor, R, the
power delivered to the load in a bandwidth B is

Bk
R

V
R

R
V

PN nn
n T

42

22
==



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Noise in Systems (4)

Limiting cases:

• 00 →⇒→ nPB :  Narrow band systems collect less noise
• 00T →⇒→ nP :  Cooler devices generate less noise
• ∞→⇒∞→ nPB :  Referred to as the ultraviolet catastrophe, it does not occur

because noise is not really white over a wide band.

Any source of noise (for example, a mixer or cable) that has a resistance R and delivers
noise power nP  can be described by an equivalent noise temperature, eT .  The noise
source can be replaced by a noisy resistor of value R at temperature eT , so that the same
noise power is delivered to the load

kB
Pn

e =T

The noise at the antenna terminals due to the background is described by an antenna
temperature, AT .  The total noise in a bandwidth B is determined from the system noise
temperature, Aes TTT += :

BkN sT=
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Calculation of Antenna Temperature

Pr

SIDELOBE
MAINBEAM

REFLECTEDEMITTED

SKY BACKGROUND

EARTH BACKGROUND

The antenna collects noise power from background sources.  The noise level can be
characterized by the antenna temperature

TA =
TB(θ,φ )G(θ ,φ)sinθ dθ dφ0

2π
∫0

π
∫

G(θ,φ)sin θ dθ dφ0
2π

∫0
π

∫

T B is the background brightness temperature and G  the antenna gain.
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Noise in Systems (5)

Returning to the radar range equation, we can calculate the signal-to-noise ratio (SNR)

BkR

LGGP
L

RN

AGP
N
P

s

rtterttr

T)4()4(
SNR 43

2

22 π

σλ

π

σ
===

Given the minimum SNR that is required for detection (detection threshold) it is possible to
determine the maximum range at which a target can be “seen” by the radar

( )
4

min
3

2

max
SNRT)4( Bk

LGGP
R

s

rtt

π

σλ
=

Similarly, the Friis equation can be modified to give the signal-to-noise ratio

BkR

LGGP
N
P

s

rttr

T)4(
SNR 2

2

π

σλ
==
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Noise Figure & Effective Temperature (1)

Noise figure is used as a measure of the noise added by a device.  It is defined as:

Fn =
(S / N )in
(S / N)out

=
Sin / Nin

Sout / Nout
=

Nout
k ToBnG

where G =
Sout
Sin

.  By convention, noise figure is defined at the standard temperature

of To = 290  K.  The noise out is the amplified noise in plus the noise added by the
device

Fn =
GNin + ∆N
k ToBnG

=1+
∆N

k ToBnG

∆N  can be viewed as originating from an increase in temperature.  The effective
temperature is

Fn = 1 +
k TeBnG
k ToBnG

= 1+
Te
To

Solve for effective temperature in terms of noise figure yielding the relationship

one F )T1(T −=
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Noise Figure & Effective Temperature (2)

The overall noise figure for M cascaded devices with noise figures   F1,F2,…, FM  and 
gains   G1,G2,…,GM  is

  
Fo = F1 +

F2 −1
G1

+
F3 −1
G1G2

+L+
FM −1

G1G2LGM −1

The overall effective temperature for M cascaded devices with temperatures
  T1, T2 ,…,TM  and gains   G1,G2,…,GM  is

  
Te = T1 +

T2
G1

+
T3

G1G2
+L+

TM
G1G2LGM−1

Example: For the receive channel shown below, the mixer has 10 dB conversion loss and 3
dB noise figure; the IF amplifier has 6 dB noise figure

Nin Nout
G1, F1 G2 , F2

IF AMP

LO

The noise figure of the dashed box is
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Example

A radar with the following parameters requires SNR = 10 dB for a target RCS of 5 m2:

30=tG  dB, Pt = 200 kW, f = 10  GHz, =nB  1 MHz, T A = 200  K

The receive channel has a mixer and IF amplifier that have a combined noise figure of 15
dB.  Assume cable losses of 3 dB.  Find the maximum detection range for this target.

We need the system noise temperature Aes TTT += .  The effective noise temperature of the
receiver is 8990)290)(132()T1(T =−=−= one F  K, and 9190T =s  K.  The noise power is

131027.1T −×=ns Bk  W.

 
ns

t

BkR

LGP

T)4(
10SNR 43

22

π

λσ
==

17
133

2235
4 1079.1

)103.1)(10()4(

)5.0()03.0)(5()10)(102(
×=

×

×
= −π

R

or R = 20556 m = 20.55 km (approximately 12.7 miles)


